A Dispatch from SEMICON West – Applied Materials Launches Epi System Focused on NMOS Strain

By Dick James
Flying in to SFO on July 7, I must have been one of many attendees delayed by the after-effects of the Asiana Airlines crash there the day before. In my case it was only an hour or so (i.e. as normal), but we couldn’t avoid seeing the remains of the aircraft as we landed. Despite the fact that the plane was burnt out, I couldn’t help being impressed that the main body of the plane had survived the impact, and of course all but two of the passengers survived – and they were outside the plane.

By coincidence I flew through Heathrow a week after another 777 did a belly-flop there a few years ago, and again I was impressed at the strength of the airframe – an engine had been ripped off a wing but otherwise it was pretty well intact – and fortunately in that case there was no fire, and no fatalities.

That’s hardly relevant to SEMICON West of course, but it’s hard not to get involved when we get that close to the statistics of travel accidents, be they road, rail or air.

Anyway – back to the show – or at least the pre-show events. Applied Materials (AMAT) had an analyst day on Monday, and in the morning they invited a few of us to some product launches. The one that caught my eye and ear was a new epi system focused on NMOS epitaxial source/drains to create channel strain, since that has been mooted as a next step for several years now, but not shown up in a production context.

The theory is that if you can get carbon and phosphorus to replace silicon atoms in the crystalline structure, because they are smaller than silicon, they will generate tensile stress in the crystal lattice. When it is deposited in cavities etched in source/drains the stress is applied to the channel. (Putting the larger germanium atoms in the lattice has the opposite effect, and creates compressive stress, an effect used since the 90nm node.)

Schematic of e-SiGe in PMOS (left), and e-Si:CP in NMOS (right) source/drains

The problem (as I understand it) has been that the carbon does not like staying in such substitutional positions, and it will abandon them as soon as it sees anneal temperatures, thus losing the stress effect. Phosphorus is happy to be substitutional, and has of course been used as a n-type dopant for decades, so I suspect the problem there is simply getting the concentration to a level sufficient to stress the lattice.

So on Monday AMAT launched the Applied Centura RP Epi system with an NMOS transistor application. To quote: “This capability supports the industry's move to extend epi deposition from PMOS transistors to NMOS transistors at the 20nm node, enabling chipmakers to build faster devices and deliver next-generation mobile computing power.”


The Applied folks seem confident that once the epi is formed, the carbon can be kept stable and capable of applying the strain at the end of the manufacturing process. I quizzed them as to how this is done and apparently the keys are the quality of the clean after cavity etch (i.e. AMAT’s Siconi dry clean), plus millisecond annealing to minimize the thermal budget.

There is plenty of literature documenting the effect; at last year’s IEDM conference, IBM announced their 22nm server process, which uses embedded strain for both N- and P-MOS[1]. Together with nitride stress, they claim a 10 percent performance increase over the 32nm equivalent. I also asked the speaker there about the carbon stability, and he confirmed that they regard it as a manufacturable process.
Cross-section of NFET showing embedded Si:C Source/Drain Stressor [1]
It seems the time of e-Si:CP NMOS is here. Applied certainly hopes so: they estimate the available market at over $500M and expanding, and that revenue has doubled over the last five years, and they have more than 80 percent share. They see an incremental $250M in revenue from epi systems by 2016.

I’ve been waiting for epi-strained NMOS for the last couple of process generations, and had almost been convinced that it wouldn’t happen. Now we have to watch for it when we get the next 20nm parts!

[1] S. Narasimha et al., “22nm High-Performance SOI Technology Featuring Dual-Embedded Stressors, Epi- Plate High-K Deep-Trench Embedded DRAM and Self-Aligned Via 15LM BEOL”, IEDM 2012, pp 52 – 55.

DickJames100x100

DICK JAMES is a 40-year veteran of the semiconductor industry and the senior technology analyst for Chipworks, an Ottawa, Canada-based specialty reverse engineering company. Chipworks analyses a broad range of devices, giving Dick a unique overview of what technologies make it into the real world of semiconductor production.

Previous Posts

A Dispatch from SEMICON West – Applied Materials Launches Epi System Focused on NMOS Strain

Thu Jul 11 13:22:00 CDT 2013

Economy Threatens Semi Growth, not Technology – so Say Fab Engineers at ASMC

Thu Jun 06 15:07:00 CDT 2013

Intel Foundries MEMS for Fuel Cell Start-up Nectar

Wed Jan 30 14:40:00 CST 2013

IBM surprises with 22nm details at IEDM

Wed Dec 12 04:00:00 CST 2012

Intel details 22nm trigate SoC process at IEDM

Tue Dec 11 12:23:00 CST 2012

GlobalFoundries takes on Intel with 14nm finFET “eXtreme Mobility” process

Tue Oct 02 16:22:00 CDT 2012

The Elephant Has Left the Room – 450 mm is a Go!

Tue Jul 10 09:35:00 CDT 2012

Sony’s PS Vita Uses Chip-on-Chip SiP – 3D, but not 3D

Fri Jul 06 09:34:00 CDT 2012

Intel’s 22-nm Trigate Transistors Exposed

Tue Apr 24 11:39:00 CDT 2012

Intel to Present on 22-nm Tri-gate Technology at VLSI Symposium

Thu Apr 12 12:21:00 CDT 2012

Dialog Semi Gets the Girls for Apple

Mon Apr 02 16:00:00 CDT 2012

Semicon China – SMIC Shows off 28-nm HKMG Development

Tue Mar 20 09:09:00 CDT 2012

GloFo’s FinFETS are Better than Intel's! Musings from CPTF

Sun Mar 18 09:58:00 CDT 2012

GlobalFoundries' Ajit Manocha Visits CES

Tue Jan 17 12:41:00 CST 2012

Intel Press Briefing and Keynote at CES 2012

Fri Jan 13 14:17:00 CST 2012

© 2013. PennWell Corporation. All Rights Reserved. PRIVACY POLICY | TERMS AND CONDITIONS